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1. Introduction

Recently conformally invariant models in one dimension were investigated extensively [1 –

17]. On the one hand, the interest derives from the AdS/CFT correspondence. Although

there has been considerable progress in understanding the AdS/CFT duality [18], nontrivial

examples of AdS2/CFT1 correspondence are unknown. On the other hand, the conformal

group SO(2, d−1) is the isometry group of anti de Sitter space AdSd. Since anti de Sitter

space describes the near-horizon geometry of a wide class of extreme black holes (for a

review see e.g. [19]), it was conjectured [20, 21] that the study of conformally invariant

models in d=1 yields new insight into the quantum mechanics of black holes. This idea

was pushed further in a series of papers [22 – 27], where some conformal mechanics on

black-hole moduli spaces in d=4 and d=5 was constructed and investigated.

Particularly appealing in this context seems a proposal in [21] that an N=4 supercon-

formal extension of the Calogero model [28] might provide a microscopic description of the

extreme Reissner-Nordström black hole near the horizon. It should be stressed, however,

that the Calogero model, which describes a pair-wise interaction of n identical particles on

the real line, is not the only multi-particle exactly solvable conformal mechanics available

in d=1. More complicated systems describing three-particle and four-particle interactions

were studied in [29 – 32]. Since in the context of [21] it is the structure of the conformal
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algebra which matters, a priori any multi-particle N=4 superconformal mechanics seems

to be a good starting point. A classification of (off-shell) d=1 supermultiplets is interesting

in its own right because of features absent in higher dimensions (see e.g. [33]). In this

connection the construction of multi-particle N=4 superconformal models is relevant for

possible couplings of d=1, N=4 supermultiplets.

Several attempts have been made to construct an N=4 superconformal extension of

the Calogero model [34 – 37]. In [34] conditions for su(1, 1|2) invariance were formulated,

and some solutions were presented. In [35] the problem was solved for a complexification

of the Calogero model. In [36, 37] the construction of an N=4 superconformal Calogero

model was reduced to solving a system of nonlinear partial differential equations, which

generalizes the Witten-Dijkgraaf-Verlinde-Verlinde equation known from two-dimensional

topological field theory [38, 39]. However, beyond the two-particle case only partial results

were obtained.

In the present work we continue the research initiated in [40] and apply the method

of unitary transformations to generate various su(1, 1|2) invariant quantum many-body

systems, including an N=4 superconformal extension of the Calogero model. In section 2

we discuss a specific unitary transformation, which maps a generic conformally invariant

model of n identical particles on the real line to a set of decoupled particles, with the

interaction being pushed into a nonlocal conformal boost generator. In this description,

an N=4 supersymmetric extension is straightforward to construct as we demonstrate in

section 3. Both the conformal boost generator and its superpartner are nonlocal in this

picture. The inverse transformation then provides us with the interacting Hamiltonian.

The closure of the superconformal algebra poses constraints on the interaction, which are

detailed and partially solved in section 4. Our superconformal models are governed by

two scalar potentials obeying certain homogeneity conditions and the Witten-Dijkgraaf-

Verlinde-Verlinde-type equations of [36, 37]. Explicit three- and four-particle solutions to

these “structure equations” for the two scalar potentials are discussed in section 5 and

found to be based on certain root systems. Beyond the models found by Wyllard [34], we

present a list of solutions which break translation invariance not only for the center-of-mass

motion but also for the relative motion. In section 6 we summarize our results and discuss

possible further developments.

2. Conformal mechanics in a free nonlocal representation

Let us consider a system of n identical particles on the real line with a Hamiltonian of the

generic form

H =
1

2m
pipi + VB(x1, . . . , xn) , (2.1)

where m stands for the mass of each particle. Throughout the paper a summation over

repeated indices is understood. Later, the bosonic potential VB will get supersymmetrically

extended to a potential V including VB .

For conformally invariant models the Hamiltonian H is part of the so(1, 2) conformal

algebra

[D,H] = −i~H , [H,K] = 2i~D , [D,K] = i~K , (2.2)
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where D and K are the dilatation and conformal boost generators, respectively. Their

realization in term of coordinates and momenta, subject to

[xi, pj ] = i~δj
i , (2.3)

reads

D = −
1

4
(xipi + pix

i) = D0 and K =
m

2
xixi = K0 , (2.4)

where the 0 subscript indicates the generators in the free model (VB=0). The first relation

in (2.2) restricts the potential via

(xi∂i + 2)VB = 0 , (2.5)

meaning that VB must be homogeneous of degree −2 for the model to be conformally

invariant. In this paper we assume this to be the case. Two simple solutions to (2.5) are

the free model of n non-interacting particles,

VB = 0 −→ H0 =
1

2m
pipi , (2.6)

and the Calogero model of n particles interacting through an inverse-square pair potential,

VB =
∑

i<j

g2

(xi − xj)2
−→ H = H0 + VB . (2.7)

As the next step we study the behavior of a generic conformal multi-particle mechanics

under a judiciously chosen conformal-algebra automorphism. Given the particular so(1, 2)

element

A = αH − 2D +
1

α
K (2.8)

for a real parameter α, let us consider the unitary transformation

T 7−→ T ′ = e
i

~
A T e−

i

~
A (2.9)

on the so(1, 2) generators:1

H 7−→ H ′ =
1

α2
K , (2.10)

D 7−→ D′ = −D +
2

α
K , (2.11)

K 7−→ K ′ = α2H − 4αD + 4K . (2.12)

Notice that in the previous consideration it is only the structure of the conformal

algebra that matters. Therefore, an analogous map exists for the free theory defined by

(H0,D0,K0):

T0 7−→ T ′
0 = e

i

~
A0 T0 e−

i

~
A0 with A0 = αH0 − 2D0 +

1

α
K0 . (2.13)

1
A was chosen such that the Baker-Haussdorff series in (2.9) terminates at the third step [40].
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This suggests the idea to combine the A-map with inverse A0-map to link H and H0 in

the following scheme:

(H,D,K)
A

7−→ (H ′,D′,K ′) = (H ′
0,D

′
0,K

′
0+α2VB)

(H̃, D̃, K̃) = (H0,D0,K0+α2V̂B)
−A0←− [ (H ′

0,D
′
0,K

′
0+α2VB)

(2.14)

with the abbreviation

V̂B = e−
i

~
A0 VB e

i

~
A0 in K̃ = K0 + α2V̂B . (2.15)

We remark that the dimensionful parameter α simply takes care of the different dimen-

sionalities of the so(1, 2) generators and drops out of the final results as was shown in [40].

For the remainder of the paper we set m = 1.

Thus, with the help of a unitary operation one can transform a generic multi-particle

conformal mechanics (2.1), (2.5) into a one describing a system of non-interacting parti-

cles. A peculiar feature of this correspondence is that the generator of special conformal

transformations K̃ is nonlocal and effectively hides the interaction potential. In fact, the

interaction has disappeared in the Hamiltonian H̃ but resurfaced in a nonlocal contribution

to the conformal boost K̃. Hence, the price paid for the simplification of the dynamics is

a nonlocal realization of the full conformal algebra in the Hilbert space of the quantized

conformal mechanics.

As an example, let us consider the conformal Calogero model describing the inverse-

square pair-wise interaction of n identical particles of unit mass on the real line,

VB =

n∑

i<j

g2

(xi−xj)2
, (2.16)

where g is the coupling constant. For this model, a map of H to H0 similar to ours

was constructed in [41]. However, the entire so(1, 2) algebra was not examined, and the

nonlocal structure present in K̃ was not revealed there. The quantum mechanical scattering

analysis of the conformal Calogero model was accomplished in [42], where it was argued

that the particles merely exchange their asymptotic momenta without altering their values.

The asymptotic wave function only picks up an energy-independent phase factor through

the scattering process. Since the conformal Calogero particles are indistinguishable, their

physics is that of n free bosons. Thus, the general consideration presented above is in

agreement with [42, 43].

3. N=4 superconformal extension

The unitary map of a generic multi-particle conformal mechanics to a set of decoupled par-

ticles considered in the previous section offers a novel way to constructing superconformal

extensions. In our setting this amounts to properly adding fermionic degrees of freedom to

a free system and modifying the nonlocal boost generator K̃ so as to close an N -extended

superconformal algebra. Application of the inverse unitary transformation to the set of free
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superparticles then produces a desired superconformal extension of the original interacting

conformal mechanics. In this section we discuss the corresponding algebraic framework.

The bosonic sector of the N=4 superconformal algebra su(1, 1|2) includes two sub-

algebras. Along with so(1, 2) considered in the previous section one also finds the su(2)

R-symmetry subalgebra generated by Ja with a = 1, 2, 3. The fermionic sector is exhausted

by the su(2) doublet supersymmetry generators Qα and Q̄α as well as their superconformal

partners Sα and S̄α, with α = 1, 2, subject to the hermiticity relations

(Qα)† = Q̄α and (Sα)† = S̄α . (3.1)

The bosonic generators are hermitian. The non-vanishing (anti)commutation relations in

our superconformal algebra read2

[D,H] = −i~ H , [H,K] = 2i~ D ,

[D,K] = +i~ K , [Ja, Jb] = i~ ǫabcJc ,

{Qα, Q̄β} = 2~ Hδα
β , {Qα, S̄β} = +2i~ (σa)α

βJa − 2~ Dδα
β − i~ Cδα

β ,

{Sα , S̄β} = 2~ Kδα
β , {Q̄α, Sβ} = −2i~ (σa)β

αJa − 2~ Dδβ
α + i~ Cδβ

α ,

[D,Qα] = −
1

2
i~ Qα , [D,Sα] = +

1

2
i~ Sα ,

[K,Qα] = +i~ Sα , [H,Sα] = −i~ Qα , (3.2)

[Ja, Qα] = −
1

2
~ (σa)α

βQβ , [Ja, Sα] = −
1

2
~ (σa)α

βSβ ,

[D, Q̄α] = −
1

2
i~ Q̄α , [D, S̄α] = +

1

2
i~ S̄α ,

[K, Q̄α] = +i~ S̄α , [H, S̄α] = −i~ Q̄α ,

[Ja, Q̄
α] =

1

2
~ Q̄β(σa)β

α , [Ja, S̄
α] =

1

2
~ S̄β(σa)β

α .

Here ǫ123 = 1, and C stands for the central charge.

Following the same strategy as in the previous section, we employ the conformal auto-

morphism (2.9) and its free inverse as indicated in (2.14), with A being of the same form

as in (2.8). It is very plausible that the new (tilded) generators differ from the free ones

only in the instances of K, Sα and S̄α, so we write (omitting the complex conjugates and

suppressing the indices)

H 7−→ H̃ = H0 ,

D 7−→ D̃ = D0 ,

K 7−→ K̃ = K0 + α2V̂ ,

Q 7−→ Q̃ = Q0 ,

S 7−→ S̃ = S0 − α
i

~
̂[S0, V ] ,

J 7−→ J̃ = J0 ,

(3.3)

2
σ1, σ2 and σ3 denote the Pauli matrices.
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where the correction to S0 is determined from the form of K̃ through the [K̃, Q̃] commutator

in (3.2), and we again use the notation

T̂ = e−
i

~
A0 T e

i

~
A0 . (3.4)

Note that we have written V instead of VB , anticipating fermionic and quantum contribu-

tions to the Hamiltonian

H = H0 + V with V = VB + VF + O(~) . (3.5)

Given V , the [H,S] and [H, S̄] commutators in (3.2) enforce an interacting part for the

supersymmetry generators,

Qα = Q0α −
i

~
[S0α, V ] and Q̄α = Q̄α

0 −
i

~
[S̄α

0 , V ] , (3.6)

while all other generators T remain free, i.e.

D = D0 , K = K0 , S = S0 and J = J0 . (3.7)

This is the result of inverting the map (3.3) to return from the tilded generators T̃ to the

original ones T . We shall, however, use the tilded generators (3.3) to find the form of V .

For a mechanical realization of the su(1, 1|2) superalgebra, one introduces fermionic

degrees of freedom represented by the operators ψi
α and ψ̄iα, with i = 1, . . . , n and α = 1, 2,

which are hermitian conjugates of each other and obey the anti-commutation relations3

{ψi
α, ψj

β} = 0 , {ψ̄iα, ψ̄jβ} = 0 , {ψi
α, ψ̄jβ} = ~ δα

βδij . (3.8)

In the extended space it is easy to construct the free fermionic generators associated with

the free Hamiltonian H0 = 1
2
pipi, namely (for m=1)

Q0α = piψ
i
α , Q̄α

0 = piψ̄
iα and S0α = xiψi

α , S̄α
0 = xiψ̄iα , (3.9)

as well as su(2) generators

J0a =
1

2
ψ̄iα(σa)α

βψi
β . (3.10)

Notice that these are automatically Weyl-ordered. The free dilatation and conformal boost

operators maintain their bosonic form

D0 = −
1

4
(xipi + pix

i) and K0 =
1

2
xixi . (3.11)

In contrast to the bosonic case, the free generators T0 fail to satisfy the full algebra (3.2).

Even for C=0, the {Q, S̄} and {Q̄, S} anticommutators require corrections cubic in the

fermions, which we can restrict to Q and Q̄ as in (3.6). Dimensional analysis reveals that

the coefficients of these cubic terms have a dimension of length−1 and thus cannot be

constants. It follows further that H contains quadratic and quartic fermionic terms, which

3Spinor indices are raised and lowered with the invariant tensor ǫ
αβ and its inverse ǫαβ , where ǫ

12 = 1.
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are collected in VF in (3.5). Hence, even for VB=0 there does not exist a free mechanical

representation of the algebra (3.2).

The generators K̃, S̃ and ˜̄S are nonlocal. Substituting their form (3.3) into the super-

conformal algebra (3.2) one gets a set of restrictions on the form of the operator V :

[K0, V ] = 0 , [D0, V ] = −i~ V , [J0a, V ] = 0 ,

{S0α, [S0β , V ]} = ~
2ψi

αψi
β , {S̄α

0 , [S̄β
0 , V ]} = ~

2ψ̄iαψ̄iβ ,

{S0α, [S̄β
0 , V ]} = +2~

2(σa)α
βJ0a +

1

2
~

2(ψi
αψ̄iβ−ψ̄iβψi

α) − ~
2Cδα

β ,

{S̄α
0 , [S0β , V ]} = −2~

2(σa)β
αJ0a −

1

2
~

2(ψi
βψ̄iα−ψ̄iαψi

β) + ~
2Cδβ

α ,

{[S0α, V ], [S0β , V ]} + i~{Q0α, [S0β , V ]} + i~{Q0β , [S0α, V ]} = 0 ,

{[S̄α
0 , V ], [S̄β

0 , V ]} + i~{Q̄α
0 , [S̄β

0 , V ]} + i~{Q̄β
0 , [S̄α

0 , V ]} = 0 ,

{[S0α, V ], [S̄β
0 , V ]} + i~{Q0α, [S̄β

0 , V ]} + i~{Q̄β
0 , [S0α, V ]} + 2~

3V δα
β = 0 ,

i~[Q0α, V ] − [H0 + V, [S0α, V ]] = 0 , i~[Q̄α
0 , V ] − [H0 + V, [S̄α

0 , V ]] = 0 .

(3.12)

Notice that the vanishing (anti)commutators discarded in (3.2) should be taken into account

as they also give constraints on V . For obtaining (3.12) the following identities are helpful:

Q̂0α = 2Q0α +
1

α
S0α , ̂̄Qα

0 = 2 Q̄α
0 +

1

α
S̄α

0 ,

Ŝ0α = −αQ0α , ̂̄Sα
0 = −α Q̄α

0 ,

S0α = α Q̂0α + 2 Ŝ0α , S̄α
0 = α ̂̄Qα

0 + 2 ̂̄Sα
0 .

(3.13)

4. The structure equations

Let us discuss the structure of solutions to the constraints (3.12). The first line in (3.12)

implies that the potential V = VB + VF + O(~) transforms as a scalar under su(2) and

is a degree −2 homogeneous function of the xi. It is straightforward to check that an

ansatz for VF quadratic in ψi and ψ̄i fails to solve (3.12). This is in contrast with N=2

superconformal extensions [40, 44]. Thus it seems natural to try a general ansatz quartic

in the fermionic coordinates,4

V = VB(x) + ~O1(x) + ~
2O2(x) + Mij(x)〈ψi

αψ̄jα〉 +
1

4
Lijkl(x)〈ψi

αψjαψ̄kβψ̄l
β〉 , (4.1)

with completely symmetric unknown functions Mij and Lijkl. Here, the symbol 〈. . . 〉

stands for symmetric (or Weyl) ordering (for our conventions see appendix A), and the

contributions ~O1(x) and ~2O2(x) were included to account for the ordering ambiguity

present in the fermionic sector. The argument x indicates dependence on {x1, . . . , xn}.

Introducing the notations

Lijkl x
l =: −Wijk and Mij xj =: Yi (4.2)

4The classical consideration in [37] implies that (4.1) is indeed the most general quartic ansatz compatible

with the N=4 superconformal algebra.
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and substituting the ansatz (4.1) into the constraints (3.12), one obtains the following

system of partial differential and algebraic “structure equations”,

Lijkl = ∂iWjkl = ∂jWikl , Mij = −∂iYj = −∂jYi , (4.3)

xiWijk = −δjk , xiYi = −C , (4.4)

Mij + WijkYk = 0 , WikpWjlp = WjkpWilp , (4.5)

as well as a boundary condition on Yi,

1

2
YiYi = VB . (4.6)

Besides, one determines the quantum corrections as

O1 = 0 and O2 =
1

8
WijkWijk . (4.7)

In contrast to N=2 superconformal models, here the algebra requires a nontrivial quantum

correction. The explicit derivation of (4.3)–(4.7) is tedious and most efficiently achieved

using reordering relations given in appendix A.

Taking into account that Wijk is a completely symmetric function, from (4.3) one finds

Wijk = ∂i∂j∂kF ⇔ Lijkl = ∂i∂j∂k∂lF ,

Yi = ∂iU ⇔ Mij = −∂i∂jU ,
(4.8)

with two scalar potentials F (x) and U(x) to be determined. Thus, these scalars govern

the N=4 superconformal extension and obey the following system of nonlinear partial

differential equations,

(∂i∂k∂pF )(∂j∂l∂pF ) = (∂j∂k∂pF )(∂i∂l∂pF ), xi∂i∂j∂kF = −δjk , (4.9)

∂i∂jU − (∂i∂j∂kF ) ∂kU = 0 ,
1

2
(∂iU)(∂iU) = VB , xi∂iU = −C . (4.10)

Notice that F is defined modulo a quadratic polynomial while U is defined up to a constant.

Wyllard [34] obtained equivalent equations, but employed a different fermionic order-

ing. In contrast to his equations, ~ does not appear in (4.9) or (4.10), since our Weyl-

ordering prescription matches smoothly to the classical limit. For the classical Calogero

model similar equations were discussed in [37].

The right-most equations in (4.9) and (4.10) are inhomogeneous with constants δjk and

C (the central charge) on the right-hand side and display an explicit coordinate dependence.

Furthermore, the second equation in (4.9) can be integrated twice to obtain

xi∂iF − 2F +
1

2
xixi = 0 , (4.11)

where we used the freedom in the definition of F to put the integration constants — a linear

function on the right-hand side — to zero. It is important to realize that the inhomogeneous

term in this integrated equation does break translation invariance and excludes the trivial

solution F = 0 equivalent to a homogeneous quadratic polynomial. This effect is absent

– 8 –
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in N=2 superconformal models, where the four-fermion potential term is not needed and,

hence, F does not appear [40]. This issue is also discussed in [34].

To be more explicit, we extract the center-of-mass dynamics by splitting

F = Fcom(X) + Frel(x) and U = Ucom(X) + Urel(x) (4.12)

with the center-of-mass coordinate X := 1
n

∑n
i=1 xi. If the relative particle motion is

translation invariant (which need not be the case), then

n∑

i=1

∂iFrel = 0 =
n∑

i=1

∂iUrel (4.13)

and, applying
∑

i ∂i to (4.11) and the last equation in (4.10), we readily find

X F ′′
com − F ′

com = −n X but X U ′′
com + U ′

com = 0 , (4.14)

which are solved by

Fcom = −
n

2
X2 ln |nX| + λX2 + µ and Ucom = −g0 ln |nX| + ν (4.15)

with free constants λ, µ, ν and g0. Clearly, in this case we may put to zero Ucom but not

Fcom, so that for g0=0 we end up with a center-of-mass contribution

Vcom =
~2

8n
X−2 +

n

4
X−2 〈ΨαΨαΨ̄βΨ̄β〉 with Ψα =

1

n

n∑

i=1

ψi
α . (4.16)

Hence, one can separate a translation-invariant relative motion from the center-of-mass mo-

tion, but the latter is non-linear due to an X−2 potential as enforced by the superconformal

algebra (3.2).

Our attack on (4.9) and (4.10) begins with the homogeneity conditions

(xi∂i − 2)F = −
1

2
xixi and xi∂iU = −C . (4.17)

The most general solution is the sum of a particular solution and the general solution to

the homogeneous equations,

(xi∂i − 2)Fhom = 0 and xi∂iUhom = 0 , (4.18)

which is spanned by the homogeneous functions of degree two and zero, respectively. For

a particular solution to (4.17), we make the ansatz

F = −
d∑

µ=0

hµ
1

2
(zµ)2 ln |zµ| and U = −

d∑

µ=0

gµ ln |zµ| (4.19)

with a certain number (d+1) of linear coordinate combinations

zµ = nµ
i xi beginning with z0 = n X =

∑
ix

i . (4.20)

– 9 –



J
H
E
P
1
1
(
2
0
0
7
)
0
0
8

The relative motion is translation invariant if
∑

i nµ
i = 0 for µ>0. Compatibility with the

conditions (4.17) directly yields

d∑

µ=0

hµ nµ
i nµ

j = δij and

d∑

µ=0

gµ = C . (4.21)

The second relation fixes the central charge, and the first relation amounts to a decomposi-

tion of the identity (δij) into rank-one projectors. It turns out that the gµ are independent

free couplings (if not forced to zero) while the hµ are not.

A minimal solution involves d+1 = n mutually orthogonal vectors nµ beginning with

~n0 = (1, 1, . . . , 1) and normalized as

~nµ · ~nν ≡
∑

in
µ
i nν

i = h−1
µ δµν . (4.22)

From (4.19) we derive

Wijk = −
n−1∑

µ=0

hµ

nµ
i nµ

j nµ
k

zµ
and Yi = −

n−1∑

µ=0

gµ
nµ

i

zµ
, (4.23)

and for the minimal choice (4.22) the bosonic potential becomes

VB =
1

2

n−1∑

µ=0

g2
µh−1

µ

(zµ)2
and O2 =

1

8

n−1∑

µ=0

h−1
µ

(zµ)2
, (4.24)

which demonstrates that the quantum corrections only renormalize the coupling constants,

g2
µ 7−→ g̃2

µ = g2
µ +

1

4
~

2 ∀ µ . (4.25)

It is instructive to first investigate small values of n. At n=2, relative translation

invariance demands ~n0=(1, 1) and ~n1=(1,−1) with h0=h1=
1
2
, whence

Frel = −
1

4
(x1−x2)2 ln |x1−x2| and Urel = −g1 ln |x1−x2| ,

W··· = −
1

2

(
1

x1+x2
±

1

x1−x2

)
and VB+~

2O2 =
g̃2
0

(x1+x2)2
+

g̃2
1

(x1−x2)2
.

(4.26)

Beyond n=2, minimal choices are no longer invariant modulo sign under all permutations

of the positions xi, but, due to the linearity of (4.17), this can be remedied by finally

summing over all permutations. The result is, in general, an overcomplete set of d+1 > n

non-orthogonal vectors. In section 5 we shall find a non-minimal one-parameter set (in F )

of n=3 solutions to all structure equations for the choice

~n0 = (1, 1, 1) , ~n1 = (1,−1, 0) , ~n2 = (1, 1,−2) plus three permutations . (4.27)

However, a nontrivial Urel based either on ~n1 or on ~n2 appears only for two specific pa-

rameter values. One may recognize here the root system of A1 ⊕ G2, which is the even

part of the root system of the Lie superalgebra G3. In the same section, we will describe
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five one-parameter families of n=4 solutions based on (parts of) the F4 root system. Here,

only three discrete models have Urel non-vanishing, but for two of these the relative particle

motion is not translation invariant.

In order to discover these and other solutions to the structure equations, within our

ansatz (4.19)–(4.21) it remains to solve the two left-most equations in (4.9) and (4.10),

∂iYj − Wijk Yk = 0 and WikpWjlp = WjkpWilp (4.28)

for Yi = ∂iU and Wijk = ∂i∂j∂kF . This is quite tough because of their nonlinearity, and we

address them in the following section. Already we notice, however, that the full system of

structure equations (4.9) and (4.10) can be attacked in two different ways. One possibility,

pursued in subsection 5.1, is to start with a given conformal potential VB , e.g. of Calogero

form, find a corresponding U , hence Y , and then search for a solution W to (4.28) before

integrating it to F . Alternatively, as in subsection 5.2, one can take a particular solution F

of the quadratic relations in (4.28), then find a solution Y to the first equation in (4.28) and

integrate it to U , thereby determining VB afterwards. The second strategy will yield N=4

superconformal models generalizing the Calogero one. Finally, any full solution (Y,W ) also

determines the su(1, 1|2) generators as

Qα = (pk + iYk)ψk
α +

i

2
Wijk 〈ψ

i
β ψjβψ̄k

α〉 ,

Q̄α = (pk − iYk) ψ̄kα +
i

2
Wijk 〈ψ

iαψ̄jβψ̄k
β〉 ,

H =
1

2
pipi +

1

2
YiYi +

~2

8
WijkWijk − ∂iYj 〈ψ

i
αψ̄jα〉 +

1

4
∂iWjkl 〈ψ

i
αψjαψ̄kβψ̄l

β〉 ,

(4.29)

while the other generators are of bilinear form given in (3.9), (3.10) and (3.11).

We conclude the section by observing a resemblance of the quadratic relations in (4.28)

or (4.9) to an n-parametric potential deformation of an n-dimensional Fröbenius alge-

bra [45], which plays an important role in two-dimensional topological field theory [38, 39].

Let us recall that an n-dimensional commutative associative algebra A with unit element e

is called a Fröbenius algebra if it is supplied with a non-degenerate symmetric bilinear form

obeying (for a review see e.g. [45])

〈a · b , c〉 = 〈a , b · c〉 ∀ a, b, c ∈ A . (4.30)

Choosing a basis {ei | i = 1, . . . , n} with e1 = e, one has

〈ei, ej〉 = ηij and ei · ej = fij
k ek , (4.31)

where ηij is the metric with inverse ηij and fij
k are the structure constants. The commu-

tativity and associativity of the algebra along with (4.30) produce the constraints

fij
k = fji

k , f1i
j = δi

j , fij
kηkl = flj

kηki , fij
kfkl

m = flj
kfki

m . (4.32)

Thus, fij
kηkl = fijl is totally symmetric and subject to the quadratic relations above.
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An n-parametric potential deformation of such a Fröbenius algebra is defined by a set

of functions

fijk(x) = ∂i∂j∂kF (x) (4.33)

descending from some scalar potential F (x) with x = {x1, . . . , xn}. To qualify as a defor-

mation, these functions must satisfy the relations

f1ij(x) = ηij , ∂iηjk = 0 , ηknfijk(x)flmn(x) = ηknfljk(x)fimn(x) , (4.34)

which represent nonlinear partial differential equations for F (x). In the context of two-

dimensional topological field theory, F is known as the free energy, and (4.34) is called

the Witten-Dijkgraaf-Verlinde-Verlinde (WDVV) equation [38, 39]. An interesting link

between the WDVV equation and differential geometry was established in [45]. Com-

paring (4.9) with (4.34), we see that our algebra does not have a distinguished element

serving as a unit element. Instead, the metric arises from the second equation in (4.9) by

a contraction of fijk with the coordinates xi.

5. Solutions to the structure equations

Proving the integrability of the structure equations (4.9) and (4.10) is a difficult task. For

the WDVV equations this was done rigorously only for the simpler case of a decomposable

Fröbenius algebra [45]. So, instead of trying to find a formal proof, we shall consider a

few explicit examples and outline a simple constructive procedure how to integrate the

structure equations. Finally, we give all solutions of the three- and four-particle cases

which fit in our ansatz (4.19) with A1 ⊕ G2 and F4 positive root vectors, respectively.

5.1 Three-body N=4 superconformal Calogero model

In this subsection we construct a particular solution to (4.9) and (4.10) or, equiva-

lently, (4.3)–(4.6), for the case of three-body Calogero model governed by the potential

VB =

3∑

i<j

g2

(xi−xj)2
, (5.1)

leading to C=3g because we sum over three permutations. It is easy to construct a cor-

responding U satisfying the second and third equation in (4.10). The general solution

reads

U = −g

3∑

i<j

ln |xi−xj| + L(y, z) , (5.2)

where L is an arbitrary function of the ratios

y =
x1

x2
and z =

x1

x3
(5.3)

subject to

(∂iL)(∂iL) = g
∑

i6=j

∂iL − ∂jL

xi − xj
, (5.4)
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and so we may put L ≡ 0, which we do for simplicity. Models based on the potential

U = −g
∑

i<j ln |xi−xj| we term ‘Calogero’.

Next we turn to the WDVV coefficients Wijk, of which there are ten for n=3. The six

linear relations in the first equation of (4.4) allow us to express the WDVV coefficients in

terms of four objects. In order to find their explicit form, we integrate (4.11) to

F = −
1

2

(
xixi ln |x1| − (x1)

2
∆(y, z)

)
, (5.5)

where ∆(y, z) is an unknown function to be determined below, and we have distinguished

the x1 coordinate. Triple differentiation of F yields

x1W111 = −1−
1

y2
−

1

z2
+Σ1+Σ2+3Σ3+3Σ4 , x1W123 = yz(Σ3 + Σ4) ,

x1W112 =
1

y
− yΣ1 − yΣ3 − 2yΣ4 , x1W113 =

1

z
− zΣ2 − 2zΣ3 − zΣ4 ,

x1W122 = −1 + y2Σ1 + y2Σ4 , x1W133 = −1 + z2Σ2 + z2Σ3 ,

x1W222 = −y3Σ1 , x1W223 = −zy2Σ4 , x1W233 = −yz2Σ3 , x1W333 = −z3Σ2 ,

(5.6)

with four subsidiary functions

Σ1 =
1

2
y3 ∂3∆

∂y3
+ 3y2 ∂2∆

∂y2
+ 3y

∂∆

∂y
, Σ2 =

1

2
z3 ∂3∆

∂z3
+ 3z2 ∂2∆

∂z2
+ 3z

∂∆

∂z
,

Σ3 =
1

2
yz2 ∂3∆

∂y∂z2
+ yz

∂2∆

∂y∂z
, Σ4 =

1

2
zy2 ∂3∆

∂z∂y2
+ yz

∂2∆

∂y∂z
.

(5.7)

In order to complete the analysis, we examine the first equation of (4.5), which couples the

two scalar potentials. It yields six linear algebraic equations for the WDVV coefficients,

but only three are independent. Abbreviating

a = (y∂2 − ∂1) U , b = (z∂3 − ∂1) U , m =
(
x1∂2∂2 + ∂1

)
U ,

p =
(
x1∂3∂3 + ∂1

)
U , n = x1∂2∂3U ,

(5.8)

one finds

Σ1 = −
m

ay2
−

b

a
Σ4 , Σ2 = −

p

bz2
+

an

b2yz
+

a2

b2
Σ4 , Σ3 = −

n

byz
−

a

b
Σ4 . (5.9)

In order to fix the last missing coefficient Σ4, one is to analyze the WDVV equations,

i.e. the second relation in (4.5). Using the explicit representation (5.6) it is straightforward

to verify that among the six nontrivial WDVV equations at n=3 only one is independent,

namely

W 22p W 33p = W 23p W 23p . (5.10)

With the help of (5.9) this reduces to a linear equation, which determines Σ4 as

Σ4 =
1

18y

(
9

y − z
+

6

y + z + yz
−

2

2y − z − yz
+

4

2z − y − yz
+

1

2yz − y − z

)
,(5.11)
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and therewith Σ1, Σ2 and Σ3.

The fact that for the three-body problem the WDVV equation (5.10) turns out to be

linear can be understood in a different way. One can extract from the WDVV equation

linear consequences which, along with other equations in (4.3)–(4.6), already contain all

the information in (5.10). Indeed, let us differentiate the middle equation in (4.10),

(∂j∂iU)(∂iU) = ∂jVB , (5.12)

and contract the first equation in (4.10) with ∂iU ,

∂jVB = Wijk(∂iU)(∂kU) . (5.13)

Now contracting the WDVV equation with (∂iU)(∂jU) and taking into account the first

equation in (4.10) one gets the linear equations

(∂i∂kU)(∂j∂kU) − Wijk ∂kVB = 0 . (5.14)

It is straightforward to verify that only one component in (5.14) is independent and contains

just the same information as (5.10).

Having fixed the WDVV coefficients algebraically, we are now in a position to find the

potential F . Substituting (5.9) and (5.11) into (5.7), one obtains for the single function

∆ a system of partial differential equations of the Euler type. The standard change of

variables

y = et and z = es (5.15)

turns it into a system of partial differential equations with constant coefficients. The latter

is readily integrated by conventional means (see e.g. [46]) and yields the following free

energy,

F (x1, x2, x3) = −
1

6
(x1+x2+x3)2 ln |x1+x2+x3| +

−
1

4

∑

i<j

(xi−xj)2 ln |xi−xj| +
1

36

∑

i<j

i6=k 6=j

(xi+xj−2xk)2 ln |xi+xj−2xk| ,

(5.16)

revealing the values

h0 =
1

3
, h1 =

1

2
, h2 = −

1

18
(5.17)

in the ansatz (4.19) for the three types of roots in (4.27). The relative particle motion is

translation invariant. Note that each sum contains three terms, so that the result is totally

symmetric in {x1, x2, x3}. Six constants of integration enter a polynomial quadratic in x,

which can be discarded since F is defined up to such a polynomial. The quantum correction

to the Calogero potential finally reads

O2 =
3

8
(x1+x1+x3)−2 +

1

4

∑

i<j

(xi−xj)−2 +
1

12

∑

i<j

i6=k 6=j

(xi+xj−2xk)−2 . (5.18)
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For the reader’s convenience we display the corresponding WDVV coefficients in ap-

pendix B.

The N=4 superconformal extension of the three-particle Calogero system produced a

unique G2-type integrable model with one free coupling and particular three-body inter-

actions [29]. Despite the latter, we call this a Calogero model because its bosonic classical

potential VB is just the (A-type) Calogero one. This terminology differs from the one of

Wyllard [34], who allowed for three-body interactions in U and VB from the outset. Our

model agrees with his second one-parameter solution.

5.2 A four-body N=4 superconformal model

In this section we consider the second strategy outlined after (4.28) and construct a four-

body N=4 superconformal model starting from a solution F to the WDVV equations. For

n=4 we make the following ansatz for the potential F ,

F (x1, x2, x3, x4) = −
1

2
h0 (x1+x2+x3+x4)2 ln |x1+x2+x3+x4| +

−
1

2
h1

∑

j>i<k<l
k 6=j 6=l

(xi+xj−xk−xl)2 ln |xi+xj−xk−xl|
(5.19)

where the permutation sum has three terms. Note that the chosen positive root vectors

~n0 = (1, 1, 1, 1) , ~n1 = (1, 1,−1,−1) , (1,−1, 1,−1) , (1,−1,−1, 1) (5.20)

give translation-invariant relative motion and form an orthogonal set, i.e. we look at a

minimal model with a A1⊕A1⊕A1⊕A1 root system. Substituting the ansatz into (4.11),

one learns that

h0 = h1 =
1

4
, (5.21)

in agreement with the minimal property h−1
µ = ~nµ·~nµ from (4.22). For the case at hand

one finds twenty WDVV equations, which happen to be satisfied identically for the above

value of h0 and h1.

Let us take the corresponding ansatz for U ,

U = −g0 ln |x1+x2+x3+x4| − g1

∑

j>i<k<l
k 6=j 6=l

ln |xi+xj−xk−xl| , (5.22)

where g0 and g1 play the role of two independent coupling constants. It is straightforward

to verify that the first equation in (4.10) holds without imposing any restrictions on the

form of the coupling constants. The last equation in (4.10) determines the value of the

central charge as

C = g0 + 3g1 , (5.23)

while the second equation in (4.10) determines the form of the bosonic potential,

VB = 2g2
0 (x1+x2+x3+x4)−2 + 2g2

1

∑

j>i<k<l

k 6=j 6=l

(xi+xj−xk−xl)−2 , (5.24)

O2 =
1

2
(x1+x2+x3+x4)−2 +

1

2

∑

j>i<k<l

k 6=j 6=l

(xi+xj−xk−xl)−2 , (5.25)
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in tune with the minimal expressions (4.24). Notice that g0 and g1 are independent and

may be set to zero individually, but not their quantum corrections. This model was also

found in [34].

5.3 All N=4 three- and four-particle models based on A1 ⊕ G2 and F4

Let us finally make a more systematic search for N=4 superconformal three- and four-

particle models, where the sums in (4.19) run over particular positive root systems and all

coefficients are left open. We adopt our second solution strategy and first solve the WDVV

equations. The resulting admissible values for the coefficients hµ already define all U = 0

models, since a vanishing U solves the first equation in (4.28) trivially. We shall encounter

a free parameter t in the allowed values hµ(t), for special values of which it is possible to

turn on some gµ in U , i.e. find nontrivial solutions to the first equation in (4.28). Motivated

by the already known solutions, we allow any positive root from A1 ⊕ G2 in the n=3 case

and from F4 in the n=4 case. The result of a computer analysis is given in tables 1–3.

In these tables, # is the number of positive roots obtained by permuting the entries

of the displayed vector, ‘type’ refers to short (S) or long (L) roots, and × indicates a free

coupling gµ. The free parameter t reflects the freedom of shifting the weights between the

short and the long roots.

For n=3, all models have translation-invariant relative motion, and all (except model 1

for t=0 and t=1
9
) exploit the full G2 root system through F . Model 1 has Urel = 0, but

models 2 and 3 with a nontrivial Urel arise at the special values of t = − 1
18

and t = 1
6
,

respectively. Model 2 was constructed in subsection 5.1, and all three indeed appear in [34].

For n=4, only models 5 and 6 feature translation-invariant relative motion, and only

model 1 uses all roots of F4. Models 1–4 have U = 0, and model 5 shows Urel = 0, leaving

models 6, 7 and 8 with a nontrivial Urel. The latter three arise at the special point t = 0

of the corresponding models listed above them. Models 1–4 all intersect at t = 1
24

, but

model 2 also agrees with model 5 at t = 0 (where it becomes model 6). Model 6 was

presented in subsection 5.2 and also by Wyllard [34], who insisted in relative translation

invariance. Furthermore, in table 4 we characterize the eight models (plus some special t

values) by the subalgebra of F4 each root system generates.

For the reader’s convenience, we display the bosonic potentials for the models 5–8:

V5 =
2 g̃2

0

(x1+x2+x3+x4)2
+

∑

3 perms

1
2
(1−16 t2)2~2

(xi+xj−xk−xl)2
+

∑

6 perms

16 t2~2

(xi−xj)2
+ O(ψ2, ψ4) ,

V6 =
2 g̃2

0

(x1+x2+x3+x4)2
+

∑

3 perms

2 g̃2
1

(xi+xj−xk−xl)2
+ O(ψ2, ψ4) ,

V7 =
∑

4 perms

2 g̃2
2

(xi+xj+xk−xl)2
+ O(ψ2, ψ4) ,

V8 =
∑

4 perms

2 g̃2
3

x2
i

+ O(ψ2, ψ4) ,

(5.26)
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A1 ⊕ G2 model 1 model 2 model 3

pos. root ~nµ # type gµ hµ gµ hµ gµ hµ

(1, 1, 1) 1 – × 1
3

× 1
3

× 1
3

(1,−1, 0) 3 S 0 1
3
−3t × 1

2
0 −1

6

(1, 1,−2) 3 L 0 t 0 − 1
18

× 1
6

Table 1: Three-particle models

F4 model 1 model 2 model 3 model 4

pos. root ~nµ # type gµ hµ gµ hµ gµ hµ gµ hµ

(1, 1, 1, 1) 1 S 0 1
12
−2t 0 1

4
−6t 0 0 0 0

(1, 1,−1,−1) 3 S 0 1
12
−2t 0 1

4
−6t 0 0 0 0

(1, 1, 1,−1) 4 S 0 1
12
−2t 0 0 0 1

4
−6t 0 0

(2, 0, 0, 0) 4 S 0 1
12
−2t 0 0 0 0 0 1

4
−6t

(2, 2, 0, 0) 6 L 0 t 0 t 0 t 0 t

(2,−2, 0, 0) 6 L 0 t 0 t 0 t 0 t

Table 2: Four-particle U=0 models

F4 continued model 5 model 6 model 7 model 8

pos. root ~nµ # type gµ hµ gµ hµ gµ hµ gµ hµ

(1, 1, 1, 1) 1 S × 1
4

× 1
4

0 0 0 0

(1, 1,−1,−1) 3 S 0 1
4
−4t × 1

4
0 0 0 0

(1, 1, 1,−1) 4 S 0 0 0 0 × 1
4

0 0

(2, 0, 0, 0) 4 S 0 0 0 0 0 0 × 1
4

(2, 2, 0, 0) 6 L 0 0 0 0 0 0 0 0

(2,−2, 0, 0) 6 L 0 t 0 0 0 0 0 0

Table 3: Four-particle U 6=0 models

model number 1 t=0, 1
24

2, 3, 4 t= 1
24

5 t= 1
16

6, 7, 8

# pos. roots 24 12 16 12 10 7 4

dimension 52 28 36 28 24 18 12

subalgebra F4 D4 B4 D4 A1⊕B3 A1⊕A3 A4
1

Table 4: Four-particle root systems

with O(ψ2, ψ4) being Weyl ordered and g̃2
µ = g2

µ + 1
4
~2. Finally, C =

∑
µ #µgµ.
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6. Conclusion

In this paper the transformation of generic conformal multi-particle mechanics into a non-

interacting system with nonlocal conformal symmetry [40] was extended to accommodate

N=4 supersymmetry. This step facilitates the construction of new su(1, 1|2) invariant

many-body systems. More concretely, for a potential ansatz quartic in the fermionic co-

ordinates, the closure of the superalgebra gave rise to a set of “structure equations” (4.9)

and (4.10) for two scalar (pre)potentials U and F determining the potential V , including

quantum corrections.

For the n-body functions U and F we made an ansatz based on the choice of a root

system, with couplings g and h, respectively, for each kind of root. This reduced the

structure equations to (4.28) with (4.23), i.e. quadratic algebraic WDVV-type equations

for ∂∂∂F and linear differential equations for ∂U in the F background. We fully analyzed

these equations for the case of three and four particles and found various solutions, based

on the root systems of A1 ⊕ G2 and F4, respectively. The G2-type models are identical to

those of Wyllard [34], whereas in the F4 case we extend his result (our model 6) by several

other solutions featuring translationally non-invariant relative particle motion. Results

based on higher-dimensional root systems will be reported elsewhere.

For three particles, the generality of our ansatz was proved by explicit integration of

the structure equations (4.9) and (4.10). With a growing number of particles, this becomes

rather involved because these equations are very rigid. For a general solution (unbiased by

the root-system ansatz) beyond n=3 a more advanced technique is needed.

Turning to possible further developments, it would be interesting to generalize the

present analysis to models exhibiting a D(2, 1|α) symmetry and to the N=8 supercon-

formal models constructed recently in [14, 17]. One may also attempt to construct an

off-shell superfield description. Finally, it is an open question whether the integrability

of N=4 superconformal multi-particle models is tied to the root systems of certain Lie

superalgebras.
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A. Fermionic Weyl ordering

Given fermionic operators ψ1, . . . , ψn, the Weyl-ordered product is defined as follows,

〈ψ1ψ2〉 =
1

2

(
ψ1ψ2 − ψ2ψ1

)
,

〈ψ1ψ2ψ3〉 =
1

3

(
ψ1〈ψ2ψ3〉 + ψ2〈ψ3ψ1〉 + ψ3〈ψ1ψ2〉) ,

〈ψ1ψ2ψ3ψ4〉 =
1

4

(
ψ1〈ψ2ψ3ψ4〉 − ψ2〈ψ3ψ4ψ1〉 + ψ3〈ψ4ψ1ψ2〉 − ψ4〈ψ1ψ2ψ3〉

)

etc., such that for any two neighboring operators one has

〈. . . ψiψj . . . 〉 = −〈. . . ψjψi . . . 〉 .

For deriving (3.12) it is convenient to pass from Weyl-ordered operators to qp-ordered ones.

In particular, for completely symmetric functions Mij and Lijkl one has

Mij 〈ψ
i
αψ̄jα〉 = Mij ψi

αψ̄jα − ~ Mkk ,

Wijk 〈ψ
iβψj

βψ̄k
α〉 = Wijk ψiβψj

βψ̄k
α − ~ Wkki ψ

i
α ,

Wijk 〈ψ
iαψ̄j

βψ̄kβ〉 = Wijk ψiαψ̄j
βψ̄kβ + ~ Wkki ψ̄

iα ,

Lijkl 〈ψ
iαψj

αψ̄k
βψ̄lβ〉 = Lijkl ψ

iαψj
αψ̄k

βψ̄lβ − 2~ Lijkk ψi
αψ̄jα + ~

2 Lkkpp .

B. WDVV coefficients

Here we present the explicit form of the WDVV coefficients for the three-body N=4 su-

perconformal Calogero model (5.16):

18W112 = +
9

x1−x2

−
4

2x1−x2−x3

+
2

2x2−x1−x3

−
1

2x3−x1−x2

−
6

x1+x2+x3

,

18W113 = +
9

x1−x3

−
4

2x1−x2−x3

−
1

2x2−x1−x3

+
2

2x3−x1−x2

−
6

x1+x2+x3

,

18W122 = −
9

x1−x2

+
2

2x1−x2−x3

−
4

2x2−x1−x3

−
1

2x3−x1−x2

−
6

x1+x2+x3

,

18W123 = +
2

2x1−x2−x3

+
2

2x2−x1−x3

+
2

2x3−x1−x2

−
6

x1+x2+x3

,

18W133 = −
9

x1−x3

+
2

2x1−x2−x3

−
1

2x2−x1−x3

−
4

2x3−x1−x2

−
6

x1+x2+x3

,

18W223 = +
9

x2−x3

−
1

2x1−x2−x3

−
4

2x2−x1−x3

+
2

2x3−x1−x2

−
6

x1+x2+x3

,

18W233 = −
9

x2−x3

−
1

2x1−x2−x3

+
2

2x2−x1−x3

−
4

2x3−x1−x2

−
6

x1+x2+x3

,

18W111 = −
9

x1−x2

−
9

x1−x3

+
8

2x1−x2−x3

−
1

2x2−x1−x3

−
1

2x3−x1−x2

−
6

x1+x2+x3

,

18W222 = +
9

x1−x2

−
9

x2−x3

−
1

2x1−x2−x3

+
8

2x2−x1−x3

−
1

2x3−x1−x2

−
6

x1+x2+x3

,

18W333 = +
9

x1−x3

+
9

x2−x3

−
1

2x1−x2−x3

−
1

2x2−x1−x3

+
8

2x3−x1−x2

−
6

x1+x2+x3

.
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The quantum correction ~2O2 = ~2

8
WijkWijk to the two-body Calogero potential was given

in (5.18) and involves three-body interactions.
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